Compression and Classification Methods for Galaxy Spectra in Large Redshift Surveys

نویسنده

  • Ofer Lahav
چکیده

Methods for compression and classification of galaxy spectra, which are useful for large galaxy redshift surveys (such as the SDSS, 2dF, 6dF and VIRMOS), are reviewed. In particular, we describe and contrast three methods: (i) Principal Component Analysis, (ii) Information Bottleneck, and (iii) Fisher Matrix. We show applications to 2dF galaxy spectra and to mock semi-analytic spectra, and we discuss how these methods can be used to study physical processes of galaxy formation, clustering and galaxy biasing in the new large redshift surveys.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovering physical parameters from galaxy spectra using MOPED

We derive physical parameters of galaxies from their observed spectrum, using MOPED, the optimized data compression algorithm of Heavens, Jimenez & Lahav (2000). Here we concentrate on parametrising galaxy properties, and apply the method to the NGC galaxies in Kennicutt’s spectral atlas. We focus on deriving the star formation history, metallicity and dust content of galaxies. The method is ve...

متن کامل

The Deep2 Galaxy Redshift Survey: Spectral Classification of Galaxies

We present a Principal Component Analysis (PCA)-based spectral classification, η, for the first 5600 galaxies observed in the DEEP2 Redshift Survey. This parameter provides a very pronounced separation between absorption and emission dominated galaxy spectra – corresponding to passively evolving and actively star-forming galaxies in the survey respectively. In addition it is shown that despite ...

متن کامل

0 Evidence for Inconsistencies in Galaxy Luminosity Functions Defined by Spectral Type

Galaxy morphological and spectroscopic types should be nearly independent of apparent magnitude in a local, magnitude-limited sample. Recent luminosity function surveys based on morphological classification of galaxies are substantially more successful at passing this test than surveys based on spectroscopic classifications. Among spectroscopic classifiers, those defined by small aperture fiber...

متن کامل

An Artificial Neural Network Approach to Classification of Galaxy Spectra

We present a method for automated classification of galaxies with low signal-to-noise (S/N) spectra typical of redshift surveys. We develop spectral simulations based on the parameters for the 2dF Galaxy Redshift Survey, and with these simulations we investigate the technique of Principal Component Analysis when applied specifically to spectra of low S/N. We relate the objective principal compo...

متن کامل

Extracting Cosmological Information from Galaxy Spectra and Observations of High-redshift Objects

I review the statistical techniques needed to extract information about physical parameters of galaxies from their observed spectra. This is important given the sheer size of the next generation of large galaxy redshift surveys. Going to the opposite extreme I review what we can learn about the nature of the primordial density field from observations of high–redshift objects. 1. Extracting cosm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000